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The technological performances of metallic compounds are largely influenced by atomic ordering. At finite
temperatures metallic alloys are not perfectly ordered nor ideally disordered. Although there is a general
consensus that successful theories of metallic systems should account for the quantum nature of the electronic
glue, existing nonperturbative high-temperature treatments are based on effective classical atomic Hamilto-
nians. We propose a solution for the above paradox and offer a fully quantum mechanical, though approximate,
theory that on equal footing deals with both electrons and ions. Thus, the amount of order and the electronic
properties of metallic alloys are self-consistently determined as a function of the temperature. Our formulation
is based on a coarse-grained version of the density functional theory and a Monte Carlo technique, which are
jointly implemented allowing for the efficient evaluation of finite temperature statistical averages. Calculations
of the relevant thermodynamic quantities and of the electronic structures for CuZn and Ni3V support that our
theory provides an appropriate description of order-disorder phase transitions.
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I. INTRODUCTION

Ground-state properties of metallic alloys are routinely
calculated by using density functional theory,1,2 which appro-
priately incorporates electronic correlations. However, most
finite temperature status-of-the-art calculations3 are based on
classical Ising models that, while allow for the accurate
evaluation of phase equilibria, cannot predict electronic
properties. A theory able to cope with both tasks must incor-
porate quantum mechanics and should be able to explore the
very large space of alloy configurations4 in order to give
reliable statistical averages. Recent density functional theory
algorithms5–8 made feasible the study of supercells contain-
ing hundreds or thousands of atoms; however, their applica-
tion remains bounded to the specific model of disorder im-
plicitly assumed by the supercell choice. Similar arguments
also apply to nonlocal extensions of the coherent potential
approximation �CPA� theory.9,10 In principle, quantum simu-
lations as the Car-Parrinello molecular dynamics �CPMD�
�Ref. 11� could be able to ab initio determine the amount of
disorder as a function of the temperature, but unfortunately,
their application to metallic alloys and phase equilibria is
very hard. In this paper we shall outline an approach to the
problem which, similarly to CPMD, is based on the density
functional theory and the Born-Oppenheimer approximation,
but where the relevant quantities shall be obtained as statis-
tical averages �by sampling the space of alloy configurations�
rather than as Boltzmann time averages. Applications to the
order-disorder transitions in CuZn and Ni3V alloys illustrate
the flexibility of our approach and show that it is able to
obtain a coherent picture of the temperature dependence for
both electronic and atomic degrees of freedom.

Although the generalization to n-ary systems is straight-
forward, in this paper we focus on binary metallic alloys
AcB1−c. They shall be studied in the �T ,c� statistical en-
semble defined by the temperature T and the mean atomic
concentration c. In order to have a tractable problem, we
shall limit ourselves to the solid state and the normal metal
regime or, equivalently, to the temperatures between the su-

perconducting and the melting transitions, TSC�T�TM. Fur-
thermore, martensitic and magnetic phenomena shall not be
considered. The following of the present paper is organized
as follows. In Sec. II the approximations that allow to derive
our method from the density functional theory are illustrated
and the basic algorithms implementing our calculations are
discussed; in Sec. III results for the order-transition in CuZn
and Ni3V alloys are presented. In the final Sec. IV we draw
our conclusions.

II. THEORY

A. Coarse-grained density functional and charge excess
functional Hamiltonian

Our first crucial step is to obtain a coarse-grained version
of the Hohenberg-Kohn density functional. If the ions con-
stituting the system are considered frozen on the sites of a
simple lattice at their equilibrium positions, Ri, then the elec-
trostatic contribution to the density functional can be written
as a sum of local terms plus some bilinear terms involving
the local moments of the electronic density:8,12

Uel����r��� = �
i

ui���i�r��� +
e2

2 �
i,j

qiMijqj . �1�

In Eq. �1�, each lattice site is associated with a Voronoi poly-
hedron �VP�, i.e., to the set of points closer to that particular
rather than to any other lattice site, the ui���i�r��� are known
functionals of the local electronic density, �i�r� and −eqi are
the charge multipole moments in each VP, and the Madelung
matrix, M, is determined by the crystal geometry only. As
commented in Ref. 8, the coupling between different VP’s in
Eq. �1� is marginal, in the sense that it has a simple, analyti-
cally tractable form. Within the popular local density ap-
proximation �LDA�, the exchange-correlation energy13 also
consists of sums of local electronic density functionals.
However, the local kinetic contributions to the density func-
tional are nontrivially entangled by the boundary conditions
�bc� that the wave function, or the Green’s function,14 must
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match at the VP surfaces. A marginally coupled density func-
tional then requires an approximation for the kinetic part.
The literature reports several ways in which such decoupling
has been obtained: Ref. 15 uses vacuum bc’s, while random
bc’s are employed in Ref. 16. In our approach the “true” bc’s
are replaced by appropriate mean field bc’s.8 The same pro-
cedure defines the class of the generalized CPA theories
�GCPA�, whose prototype, the isomorphous CPA �ICPA�, has
been introduced many years ago by Soven.17 The ICPA pro-
vides an excellent picture18 of the spectral properties of me-
tallic alloys but may lead to incorrect predictions about the
electrostatics.19 Modern GCPA schemes such as the polymor-
phous CPA �PCPA� �Ref. 7� heal the shortcomings of the old
ICPA model and provide fairly good total energies both for
ordered and disordered alloy configurations.8 We shall then
use the GCPA density functional:8

�GCPA���i�r��,�;���� = �
i

�����i�r��� +
e2

2 �
ij

qiMijqj

− ��
i

qi. �2�

In Eq. �2�, the dependence on the alloy configuration is iden-
tified by the set of occupation numbers ���, with �i=1 �or 0�
for sites occupied by an A �or B� atom. In the case of a
simple lattice, the local functionals �����i�r��� parametri-
cally depend on the site chemical occupation only, �=A or
B. Minimizing Eq. �2� with respect to the �i�r� provides a set
of Euler-Lagrange equations coupled only through the Made-
lung potentials, Vi=� jMijqj, and the chemical potential �:

	��

	�i�r�
+ e2Vi = � . �3�

Within the alloy sample specified by ���, due to Eq. �3�
and to the variational properties of the GCPA density
functional,8,20,21 the local charge densities for each chemical
component, ���r�, are unique functions8 of the Madelung
potentials. By virtue of the Hohenberg-Kohn theorem, the
same holds for any other local physical observable,

�O	i = O��Vi� . �4�

Evidently, also the charge moments, qi, are unique functions
of the Vi. If, as it can be argued on a physical ground, the qV
laws, qi=q��Vi�, are strictly monotonic,8 then they can be
inverted, thus allowing to recast the first term in Eq. �2� as a
function of the charge moments rather than a functional of
the full charge density, �����i�r���→ �̃��qi�. This gives the
desired coarse graining.

Actually, in the metallic state, the qV laws are not only
monotonic but numerically almost indistinguishable from
straight lines.8,22,23 Thus, an excellent approximation for Eq.
�2� can be obtained by a series expansion about the zero-field
�or ICPA� values of the charge moments, qi

0. This gives the

charge excess functional �CEF� already obtained on a phe-
nomenological ground in Ref. 23,

�CEF��q�,�;���� = �
i

ai

2
�qi − qi

0�2 +
e2

2 �
ij

qiMijqj − ��
i

qi,

�5�

where ai= �d2�̃��q� /dq2�q=q0
takes the values aA or aB, de-

pending on the site occupation. For a given configuration,
���, the minimum value of the functional in Eq. �2� or Eq. �5�
corresponds to the total system energy and, therefore, pro-
vides an ab initio effective atomic Hamiltonian.23 Unlike
most Ising models, such CEF Hamiltonian24 includes effec-
tive interactions at all distances and n-body interactions up to
any value for n. For a binary alloy, it is determined by only
three concentration-dependent parameters that can be easily
obtained by GCPA density functional calculations as de-
scribed in Ref. 8.

B. Generalized coherent potential approximation charge
excess functional Monte Carlo method

In this paper we implement a coarse-grained all-electrons
theory based on the GCPA density functional and a finite
temperature Monte Carlo �MC� sampling25,26 of the alloy
configurations space. A flux diagram of the theory, in the
following referred to as GCPA-CEF-MC, is shown in Fig. 1.
GCPA-CEF-MC calculations consist of three major stages:

�i� The GCPA density functional is determined by T=0
electronic structure calculations.

�ii� For a given thermodynamic point �T ,c� the relevant
ensemble of configurations is sampled by a MC based on the

FIG. 1. Flow chart illustrating the GCPA-CEF-MC algorithm.
The three main steps of the algorithm are highlighted by thick lines.

BRUNO, MAMMANO, AND GINATEMPO PHYSICAL REVIEW B 79, 184204 �2009�

184204-2



CEF Hamiltonian; for each configuration, the local charges
and Madelung potentials are obtained by minimizing Eq. �5�
whose solutions are numerically indistinguishable8 from
those of Eq. �2�. The same stage provides the ensemble av-
erages corresponding to the relevant thermodynamic quanti-
ties and to the properties related with the atomic degrees of
freedom only, such as, e.g., the pair-correlation functions.

�iii� The distribution of the Madelung potentials �DMP�
obtained at stage �II� �see Fig. 2� then allows for the evalu-
ation of the appropriate ensemble averages for the electronic
properties through Eq. �4�.

The details of the practical implementation of the above
three steps are presented in Appendix A. We wish to high-
light here a point of conceptual importance. A GCPA theory
requires a model,8 i.e., the weights to be assigned to different
atomic environments. The DMP, obtained at the stage �ii�
above, actually provides the statistical weights to be given to
each atomic environment, thus, at variance of existing GCPA
theories, the present theory avoids any arbitrary model and
the electronic properties obtained at the stage �iii�, such as
the DOS’s shown in Fig. 3, are then free of any a priori
assumption about the ordering status of the alloy under con-
sideration.

III. RESULTS FOR CuZn AND Ni3V ALLOYS

In order to test our GCPA-CEF-MC method, we have se-
lected two well studied systems: CuZn,10,27,28 already dis-
cussed by Landau29 as the prototype for his theory of second-
order phase transitions and Ni3V,30,31 for which there is
competition between different ordered structures. For both
alloys thermal expansion has been included.32 However, this
inclusion implies only small quantitative changes to our re-

sults. The details of our calculations are given in Appendix
A.

Below TM, both systems present disordered solid solution
phases based on the relatively open bcc lattice for CuZn and
on the close-packed fcc for Ni3V. On decreasing T, both
systems undergo a transition to the ordered phases, B2 and
D022 respectively �see Appendix B�. The phase transitions
have been monitored by plotting the total energies and the
specific heats as a function of T �Fig. 4�.

The calculations for CuZn alloys show the neat evidence
of an order-disorder transition occurring at TO
465 K, with
a smooth dependence on N, the number of atoms contained
in the simulation box. The specific heat exhibits the 
 shape
that is a typical feature of second-order phase transitions,
while no hysteresis loop is visible in the trends of the total
energies. For this system, detailed data about the temperature
dependence of the intensity of the relevant peak of the struc-
ture factor, h100, are available from x-ray or neutron-
diffraction experiments.33,34 The comparison with our simu-
lation results, displayed in Fig. 5, shows a very good
agreement. In particular, the comparison is excellent above
TO, while, below TO, it is more difficult since the strong T
dependence of x-rays Cu atomic factors33 causes a decrease
in the experimentally measured h100 as T→0.
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FIG. 2. Distributions of the Madelung potentials �DMP�. Calcu-
lated DMP’s for CuZn �left� and Ni3V �right� alloys at the indicated
temperatures. The structures visible in the DMP’s are associated
with the local atomic environments. Above the transition tempera-
ture �TO
465 K for CuZn and TO=1701�11 K for Ni3V� the
DMP’s present an overall Gaussian shape, while at lower tempera-
tures they resemble the T→0 limit, consisting of 	-like peaks, one
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FIG. 3. �Color online� Site resolved electronic DOS’s for CuZn
alloys. Upper frame: mean DOS contributions from Cu and Zn sites
at the indicated temperatures. Lower frame: the comparison be-
tween the mean DOS’s from Cu and Zn sites at T=350 K �thick
black lines� with those from the most extreme chemical environ-
ments in the GCPA ensemble �light lines, the corresponding values
for e2Vi are indicated by the labels� shows the sensitivity of the
theory to the site environments. The lower frame reports also the
ICPA site resolved DOS evaluated at the same lattice constant
�thick gray lines�.
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In the vicinity of the transition, quite large N values are
necessary to obtain well converged thermodynamic proper-
ties for the Ni3V system. For the largest simulation box,
ordering occurs on cooling between 1692.5 and 1690 K,
while, on heating, the low-T state disorders between 1710
and 1712.5 K. Our best estimate for TO in Ni3V is then
1701�11 K. This hysteresis loop reveals the first-order
character of the symmetry breaking fcc-D022 transition.35

This is also confirmed by the abrupt change in the structure
factor displayed in Fig. 6. These sharp first-order features are
gradually suppressed by finite-size effects in the smaller
simulation boxes investigated.

Our results demonstrate that the GCPA-CEF-MC theory is
able to provide a sensible description of ordering phenomena

in metallic alloys. Remarkably, we find complete agreement
with the experiment about the low-T ordered phases and the
theory correctly discriminates between first- and second-
order transitions. The agreement with the experiments about
the atomic pair correlation is quantitatively excellent, at least
for the CuZn system for which experimental results are
available. However, the ordering temperatures obtained from
our simulations are not completely satisfactory. The experi-
mental ordering temperatures36 for CuZn and Ni3V, 740 K
and 1313 K, respectively, are in one case lower and in the
other higher than the calculated values. This is probably due
to the single-site nature of the GCPA and to the approxima-
tions �see Appendix A� made for the site potentials.

IV. CONCLUSIONS

We have presented a theoretical scheme that allows for
the simulation of metallic alloys including both electronic
and nuclear degrees of freedom. The theory is based on the
Born-Oppenheimer approximation and the coarse-grained
electronic density functional that we have obtained by apply-
ing mean field, GCPA, boundary conditions at the surfaces of
conveniently chosen atomic-sized elementary cells.

The results for two different systems, CuZn and Ni3V,
presented in the previous section are very encouraging: the
theory appears able to discriminate between first- and
second-order phase transitions as well as to reproduce the
experimental data on atomic ordering and to evaluate the
temperature dependence of the electronic structure. How-
ever, the obtained estimates of the transition temperatures are
less satisfactory, with relative errors about 30% and 15% for
CuZn and Ni3V, respectively. Possible sources could be the
single-site approximation that is implied by the GCPA coarse
graining, or the further approximations made in the reported
calculations: the atomic sphere approximation for the site
potentials �ASA� and the LDA for the exchange-correlation
functional. We remark that neither the ASA nor the LDA are
necessary to the implementation of our scheme. At similarity
of the GCPA,8 also the present theory is able to deal with
space-filling potentials, at the price of including dipole or
quadrupole terms in Eq. �5�, and non-LDA approximations
for the exchange-correlation potential could be used, pro-
vided they are local in the electronic density or in its gradi-
ents.

In summary, we believe that the methodologies presented
in this paper offer a route to alloy thermodynamics that fully
includes electrons and appreciably enlarges the scales at
which quantum mechanics can be applied. The calculations
here discussed consider up to 2000 atoms and up to 1011

local chemical environments for each point in the �T ,c�
space. It is clear that such impressive figures can be obtained
only because we have a fixed crystal lattice. Our method
appears complementary to the CPMD, since it is particularly
suitable for the study of diffusive transitions in the solid
state. We are confident that, in the next future, coarse-grained
density functional theories shall be extended to magnetic
metals and to the mesoscopic domain, in order to study de-
fects and plasticity.
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APPENDIX A: DETAILS OF CALCULATIONS

1. Determination of the CEF coefficients from GCPA
calculations at T=0

The starting point are GCPA electronic structure calcula-
tions executed at T=0. These allow to evaluate the GCPA
density functional, Eq. �2�, or the CEF functional, Eq. �5�,
through the CEF coefficients, a� and k�, where �=A ,B in-

dicate the chemical species. In fact, by minimizing Eq. �5�
with respect to the local charge excess, qi, using also the
definition of the Madelung potentials, we obtain

a��qi − q�
0� + e2Vi = � . �A1�

The above equation has the same form as Eq. �1� of Ref. 23
with the identification

k� = a�q�
0 + � . �A2�

The coefficients a� and k� can then be obtained by a
linear regression of the GCPA output for the site charge mo-
ments and Madelung potentials evaluated at the appropriate
lattice constants. While the a� depend only on the mean
atomic concentrations and the lattice geometry, the constants
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FIG. 6. �Color online� Ni-V partial structure factor for Ni3V alloys in the ky =0 plane, at the indicated temperatures. Above TO, the kx and
kz directions are equivalent, due to the cubic symmetry of the disordered fcc phase. Below TO, the cubic symmetry is broken, giving rise to
the tetragonal symmetry of the D022 structure, with the characteristic peaks at �1,0,0� and �1/2,0,1�. It is remarkable the abrupt change in the
structure �see Appendix B�, that on cooling occurs between 1692.5 and 1690 K.
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k� depend also on the specific sample used in the GCPA
calculations, through the chemical potential �. However, as
shown in Ref. 23, the k’s enter in the CEF expression for the
total energy of a binary alloy, AcB1−c, only through the dif-
ference �k=kA−kB, which is independent on the sample.
Thus, the CEF Hamiltonian is completely determined by aA,
aB, and kA−kB. The robustness of the above fitting procedure
has been commented in Ref. 8.

2. CEF-MC calculations at T0

Once the CEF Hamiltonian coefficients are determined, a
Metropolis’ lattice MC is used to sample the space of the
alloy configurations. Supercells containing N atoms and pe-
riodic boundary conditions are used. Each simulation starts
from some conveniently chosen configuration, ���, the total
energy of which, E��� is evaluated by the CEF Hamiltonian,
as described in Refs. 23 and 24. Such evaluation requires the
numerical inversion of an N�N matrix and then, a compu-
tational work proportional to N3, or O�N3�. A MC move con-
sists of an attempt to exchange the chemical occupations of
two randomly selected sites, say i and j. Thus, if the two
configurations considered are

��� = �1, . . . ,�i, . . . ,� j, . . . ,�N �A3�

and

���� = �1, . . . ,� j, . . . ,�i, . . . ,�N �A4�

the energy difference �E=E����−E��� is evaluated. Accord-
ingly with Metropolis’ rule, the move is accepted with prob-
ability p=min�1,exp�− �E

kBT ��. Further details of our MC algo-
rithm shall be discussed in a future publication. Here we just
quote its computational performances: only accepted moves
require an appreciable amount CPU time scaling as O�N2�.
Although these performances are comparable with those of
classical simulations with long ranged forces, we highlight
that the CEF Hamiltonian used here has a fully quantum
mechanical nature because it explicitly contains electrons
through their local moments, the qi.

For each temperature, at least 5000 N configurations are
discarded, then statistics is accumulated for the quantities of
interest for at least 10 000 N configurations, and the corre-
sponding numerical errors are statistically elaborated. In par-
ticular the histograms for the DMP �see Fig. 2� play a crucial
role in our theory. Accordingly with the above, at least
10 000 N2 different atomic environments are considered for
each thermodynamic point that, for the largest simulation
boxes employed, amounts to about 4�1010 environments.
We remark that the size of the above analysis has no prece-
dents in electronic structure calculations. Standard methods26

have been used for the calculation of the mean total energies.
The specific heats have been evaluated from the energy fluc-
tuations and the pair-correlation functions by a fast Fourier
transform algorithm.

3. Evaluation of temperature-dependent electronic properties:
GCPA at T0

In the statistical ensemble specified by �T ,c�, the above
described CEF-MC calculations provide the frequencies, wi,

for the occurrence of each chemical environment that, in a
GCPA theory, is specified by the value of the Madelung po-
tential Vi. Examples of such frequencies or DMP are the
w�V� plotted in Fig. 2. As stressed in the paper, the expecta-
tion values of local electronic properties are unique functions
of Vi �see Eq. �4��. On the other hand, a GCPA theory is
determined by the choice of the statistical weights in wi, as
discussed in Ref. 8. Such self-consistent GCPA calculations
required minor modifications to our well tested KKR-CPA

code.37 In particular, at the end of each Kohn-Sham iteration,
each time the site potentials are reconstructed from the
charge density, constant terms Vi are added and each site
Green’s function is weighted by wi in order to determine the
GCPA coherent medium.

In spite of the simplicity of the above procedure, the ef-
fects on local electronic quantities can be huge, as it is evi-
dent from a look at the DOS’s plotted in the lower frame of
Fig. 3. As discussed in Ref. 38, due to the metallic screening
and the self-consistent iteration procedure, these effects are
not trivial and can be quite large.

Rather than using the full set of values of the Vi generated
by the algorithm, it is sufficient to employ sufficiently accu-
rate histograms for the DMP. We have executed test of the
convergence of the above procedure with respect to size of
the step used in building the histograms, �V. We have found
that the DOS obtained for e2�V=2�10−2 Ry and e2�V=2
�10−3 a.u. are almost undistinguishable. This implies that
the complex DMP features in Fig. 2 are already reproduced
using about ten histograms for each chemical species. For all
electronic structure calculations reported in this paper e2�V
has been set to 2�10−3 Ry, that implies one or two hun-
dreds histograms for each chemical species.

4. GCPA calculations

All GCPA calculations, see �i� and �iii�, have been per-
formed by conveniently modified versions of our KKR-CPA

code37 using the atomic sphere approximation �ASA� for the
site potentials, with the atomic spheres volumes fixed to the
mean atomic volume. Depending on the amount of structure
in the k space, up to 2�104 k points in the full Brillouin
zone have been used for each of 31 energies over a complex
integration contour. The core electrons treatment has been
fully relativistic while a scalar relativistic approximation has
been used for valence states. The exchange-correlation po-
tential has been approximated by the LDA.

5. Thermal expansion

In this paper, the effects of ionic motion have been in-
cluded using the Debye-Grüneisen model of Moruzzi et al.,32

one of the simplest treatments able to provide a realistic pic-
ture of lattice vibrations and thermal expansion in metals.
The relevant quantities in the model are the Debye tempera-
ture �D and the Grüneisen constant �, which can be easily
evaluated from the dependence of the calculated total ener-
gies on the crystal volume. The obtained values are reported
in Table I. As implied by the Born-Oppenheimer approxima-
tion which is implicit in the model, the total energy is simply
written as the sum of an electronic and a vibrational term.
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For each temperature, we used the lattice parameters ob-
tained by the Debye-Grüneisen model and their temperature
dependence has been fitted by a Padé approximant. The pa-
rameters of the CEF Hamiltonian, aA, aB, and kA−kB, have
been obtained as described above from PCPA calculations
executed for randomly occupied supercells containing 64 Cu
and 64 Zn �81 Ni and 27 V� atoms for CuZn �Ni3V� alloys.
The dependence of the CEF parameters on the lattice con-
stants has been fitted by second-order polynomials. For all
CEF calculations the charge multipolar expansion of Ref. 8
has been truncated at �=0.

APPENDIX B: THE CRYSTAL STRUCTURES DISCUSSED

In this section we provide some additional information
about the crystal structures which are relevant for the order-
disorder transitions in CuZn and Ni3V alloys.

1. CuZn

About the equiatomic concentration CuZn alloys form the
so-called �-brass structure, a substitutional solid solution

based on the bcc lattice. On decreasing the temperature, at
TO=727 K, the system orders in the �� structure based on
the cubic B2 lattice.36 According to Khachaturyan42 this or-
dering transition can be discussed in terms of the concentra-
tion waves generated by the star corresponding to the Lif-
shitz point P= 2�

alat
�111�, where alat is the lattice parameter.

Both structures have cubic symmetry. The spatial groups of
the ordered and the disordered structures �see Fig. 7� are

denoted as Pm3̄m and Im3̄m, respectively; the corresponding
Pearson symbols are cP2 and cI2.

2. Ni3V

At low V concentrations, NiV alloys present a high-
temperature phase based on the Ni fcc lattice �space group:

Fm3̄m, Pearson symbol: cF4� with substitutional disorder.
On cooling at the stoichiometric composition, Ni3V, at TO
=1318 K the alloy forms the ordered D022 phase �space
group: I4 /mmm, Pearson symbol: tI8�. As shown in Fig. 8,

TABLE I. Calculated and experimental bulk modulus, B, Debye temperature, �D, Gruneisen constants, �,
lattice parameters at 293 K, alat, and isothermal linear expansion coefficient at 298 K, �T.

CuZn Ni3V

Property Theory Experiment Theory Experiment

B �GPa� 166 145�22 �Ref. 39� 250 124 �Ref. 40�
�D�K� 343 302�1 �Ref. 39� 442

� 2.53 1.81 1.15–4.9 �Ref. 40�
alat�a.u.� 5.426 5.576 �Ref. 41� 6.601 6.693 �Ref. 41�
�T�K−1� 9.52 19.1�10−6 �Ref. 39� 5.6�10−6 10.6 �Ref. 40�

FIG. 7. �Color online� Low-temperature B2 phase for CuZn al-
loys. Different shading identifies different chemical elements.

FIG. 8. �Color online� Low-temperature D022 phase for Ni3V
alloys. Different shading identifies different chemical elements.The
ordered D022 phase has a tetragonal symmetry.
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the ordered phase has a tetragonal symmetry, with the z axis
corresponding to the vertical axis in the figure. The crystal-
lographic unit cell is formed by a V atom at �0,0 ,0�, a Ni1
atom at �0,0 ,clat /2�, and two crystallographically equivalent
Ni2 atoms at the positions �alat /2,0 ,clat /4� and
�0,alat /2,clat /4�. This is the reason why at the lowest tem-
peratures reported in Fig. 3, two differently charge states for
Ni atoms can be recognized. For clat /alat=2, as assumed in
our calculations, the atoms are on the positions of the fcc
lattice, this notwithstanding the system has still a tetragonal
symmetry. Actually the Ni3V system is close to this ideal
ratio, Pearson’s handbook41 reports clat /alat=2.0362. The rel-
evant stars generating the fcc-D022 ordering transition is

composed by the Lifshitz points X= 2�
alat

�100� and W
= 2�

alat
�101

2 �. Due to the reduction in the symmetry when un-
dergoing the transition, three martensitic variants of the D022
phase can form, in correspondence to the three possible ori-
entations of the ordered phase with respect to the parent
phase crystal axes. Moreover, the doubling of the unit cell
size along the ordered phase z axis makes the new phase
formation incompatible with supercells with edge
l���=x ,y ,z� for which all the ratios l� /alat are odd numbers.
This, and the fact that the above-mentioned three martensitic
variants have the same formation energy, makes particularly
difficult the MC simulation of the Ni3V order-disorder
transition.
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